# Creates a 2x3 array of random numbers between 0 and 1np.random.rand(2,3) # Creates a 2x3 array of random numbers from a standard normal distribution# [0, 1)np.random.randn(2, 3) np.random.randn(3) #creates 1D array with 3 elements# # Creates a 3x4 array of random integers between 0 and 10np.random.randint(0, 10, size=(3, 4))
np.random.rand()
Generates random numbers from a uniform distribution over [0, 1) for the given shape (dimensions).
np.random.randn()
np.random.randn() generates random numbers drawn from the standard normal distribution, meaning the numbers will be centered around 0, with a standard deviation of 1.
The function np.random.randn(100, 2) will generate a 2D array with 100 rows and 2 columns. Each value in this array is a random number drawn from the standard normal distribution.
np.random.randint(low,high=None,size=None)
Generates random integers from the discrete uniform distribution in the specified range [low, high).
Distributions
"""Continuous (generate floats)"""## Creates a 3x4 array of random numbers between 0 and 10np.random.uniform(0,10, size=(3,4))# Creates a 2x3 array of random numbers from a normal distribution with mean 0 and std deviation 1np.random.normal(0, 1, size=(2, 3)) """Discrete (generate ints)"""# Simulates 100 trials of 10 coin flips with a probability of 0.5 for headsnp.random.binomial(10, 0.5, size=100) # Generates 100 samples from a Poisson distribution with an average of 5 eventsnp.random.poisson(5, size=100)
np.random.uniform(low=0.0, high=1.0, size=None)
Generates random numbers from a uniform distribution over the interval [low, high)
np.random.normal(loc=0.0, scale=1.0,size=None)
Generates random numbers from a normal (Gaussian) distribution with mean loc and standard deviation scale